AD=A112 800  NAVAL POSTGRADUATE SCHOOL MONTEREY CA 32
AN INVESTIGATION OF ENGINE AND TEST CELL OPERATING CONDITIONS Gmofretu)
DEC 81 D W THORNBURG

UNCLASSIFIED L




0 =
== fl22
| 22
= &
NL2s flis e

1

’




v ()

DAL 1

Fee

DTG FILE COPY

O,
NAVAL POSTGRADUATE SGHOOL

Monterey, Galifornia

THESIS

AN INVESTIGATION OF ENGINE AND TEST CELL
OPERATING CONDITIONS ON THE EFFECTIVENESS
OF SMOKE SUPPRESSANT FUEL ADDITIVES

by
Donald Wendell Thornburg
December 1981

Thesis aAdvisor: D. W. Netzer

S
Approved for public release; distribution unlimited

DTIC

ELECTE]
APR1 1982

€3
o

e




-

UNCLASSIFIED
SECUMTY CLASZICATION OF TS PAGE (Then Dase Bnaveved)
REPORT DOCUMENTATION PAGE BEFORE COMPLETinc PORM
ABE 1 4 LAATTT] | (N

2. GOVY ACCESSION NO[ 3 ARECIMIENT'S CATALOG NUMBER
B S P B

A

4. TITLE rand Subittie) $ TYPE OF REPOAT & PEMOC COVERED

An Investigation of Engine and Test Cell g:zz:;ei fggils'
Operating Conditions on the Effectiveness

€A & WORK UNIT NyNMSERS
Naval Postgraduate School

Monterey, California 93940

of Smoke Suppressant Fuel Additives ¢ PERFORMING ORG. AERORT HuNSER
s T CONTRACT R GRANT wewetare 1
Donald Wendell Thornburg N6237681WRU0014

3. PERFORMING ORGANIZATION NAME AND ACORESS 0 R ROgR AN L EMENT PROIECT T ANK

1Y CONTROLLING OFPVICE nANME AND ADOARESS 12. "’:&; DAT(198 1
Naval Air Propulsion Center Dece ei-
Trenton, New Jersey 08628 '1‘0"2”"““ or races
FTT uoniTORMNG ACUNCY NAME & ACORESHI! diiterent tram Cantrelling Oftice) | 8. SECURITY CLASS. (of this report)
Naval Postgraduate School Unclassified

Monterey, California 93940

Se. DECLASSIFICATION: DOWNGRADING
SCHEOULE '

[76. OIRTRIBUTION STATEMENT (of thie Repeer)

Approved for public release; distribution unlimited

17. DISTAIBUTION STATEMENT (of the sbotrect entered In Bleek 20, I( ditterent frem Report)

16. SUPPLEMENTARY NOTES

19. Xx€Y WORDS (Cantinye en reveree side 1/ vy and fy by bieeh mumber)
Turbojet

Test Cell

Pollution

Fuel Additives

20. Aﬁfacv (c - side 1 ery and idontify by block mumber)

Tests were conducted in a one-eighth scale turbojet test cell
with a ramjet type combustor to investigate the effects of fuel
additives on smoke reduction. Particle size and mass concentra-
tions were determined at the engine and stack exhausts using three
wavelength optical detector systems. Particulate samples were

also collected at the engine exhaust and analyzed with a scanning

electron microscope. __

00 ‘3‘.’:% 1473  eormion oF : wov 4818 cesoLETE

UNCLASSIFIZED

5.M 1103-714- 4801 -
? 0 ¢ SECUMTY CLABBIFICATION OF Tuil S AaGE  Phen Dors Snterea)

v



' l UNCLASSIFIED . l

SUMYY CLABNIICATION GF Tuit PAQE/Ven NRete Basernd-

Combustor temperature and fuel additives were found to signi-
ficantly affect particulate mass concentrations emitted from the

engine while particle size appeared to be unaffected. No signi-

ficant changes in the particulate size or mass occurred from the

engine exhaust to the stack exhaust.

The optical determination of exhaust mean particulate size/mass
concentration with three wavelength optical detector systems ap-
pears to be a good and reasonably accurate technique for evaluating
the effects of engine and test cell operating conditions and fuel
composition changes on the emitted particulates.

r sceceaninn Yor

- -4

-
.

- [T £0 YR —

SO - _~J

bk e d

Di_tvitution/ ]

Avaixnh!lity‘Codes__wJ

i Avail and/or
Special

Al
ot

DD  Form

s/N ‘B3 2014-6601

S

1473 2 UNCLASSIFIED

P e S = U S
SECUMTPY CLASHIMICATION OF Ywil P AGEMhen Jera Entered)

i heren e n i S b




Approved for public release; distribution unlimited

An Investigation of Engine and Test Cell |
Operating Conditions on the Effectiveness
of Smoke Suppressant Fuel Additives

by

Donald Wendell Thornburg ;
Lieutenant, United States Navy :
B.S., University of Tennessee, 1974 i

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
December 1981

Author: M w._mlmzaf
- / ’ - 7

Yool =%
/,['/""Q/ bt S

N

/) Thesis Advisor

Approved by:

—_— Y
. .

[ R 4 [ N A
Chairman, Department of Aeronautics

/o

Dean of Science and Engineering




B L e

ABSTRACT

Tests were conducted in a one-eighth scale turbojet test
cell with a ramjet type combustor to investigate the effects
of fuel additives on smoke reduction. Particle size and
mass concentrations were determined at the engine and stack
exhausts using three wavelength optical detector systems.
Particulate samples were also collected at the engine ex-
haust and analyzed with a scanning electron microscope.

Combustor tempmerature and fuel additives were found to
significantly affect particulate mass concentrations emitted
from the engine while particle size appeared to be unaf-
fected. No significant changes in the particulate size or
mass occurred from the engine exhaust to the stack exhaust.

The optical determination of exhaust mean particulate
size/mass concentration with three wavelength optical de-~
tector systems appears to be a good and reasonably accurate
technique for evaluating the effects of engine and test cell
operating conditions and fuel composition changes on the

emitted particulates.
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I. INTRODUCTION

The Navy utilizes jet engine test cells as a means cf
statically testing and evaluating the operating charac-
teristics of high performance, turbojet engines. The test
cells are large, permanent structures located at facilities
where jet engine overhaul is performed. The primary advan-
tage of using test cells is that the engine can be removed
from the aircraft, overhauled, and then tested in a con-
trolled environment prior to reinstallation aboard the air-
craft. This technique of engine maintenance insures a high
degree of engine reliability focllowing major overhauls.

The Navy's use of jet engine test cells has come under
close scrutiny by the Environmental Protection Agency (EPA)
and some local pollution control boards in recent years.
The chief concern involves the large amount of pollutants
being produced by the engines while installed and operating
in a test cell environment.

The EPA requirements initiate national guidelines for
pollution control which may be augmented with further, more
stringent requirements by local pollution control boards.
Although military jet engines are exempt from pollution
control requirements while installed and operating in an
aircraft, they are subject to locally imposed requirements

while operating in a test cell. Local standards of pollution
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control imposed by the San Diego and Bay Area Pollution
Control Districts have resulted in lawsuits against the Navy
for its inability to meet these standards [Ref. 1l]. Of
primary concern is the large amount of smoke emitted from
the engines while operating in the test cells. Future con-
cerns will probably include emissions of the oxides of
nitrogen. As technology has not yet advanced to the point
of being able to produce pollution-free, high-performance
engines for use in military aircraft, another means of re-
ducing pollutant levels is necessary. Modifications to
existing test cells are possible but are extremely expen-
sive. As an easy, cost-effective solution, smoke suppres-
sant fuel additives are being investigated to determine
their overall effect on engine performance.

The research documented in the following pages describes
an investigation into the effects of engine operating con-
ditions (flow rates, fuel/air ratio, temperature) and the
use of fuel additives as a means of controlling particulate
emissions from jet engines operating in a test cell environ-
ment. Darnell [Ref., 2] initiated the program at the Naval
Postgraduate School using a one-eighth scale turbojet test
cell together with a dump combustor operated at a pressure
of ten atmospheres. This investigation was a follow-on
effort incorporating recommended changes to test procedures

and apparatus.
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Darnell [Ref. 2] attempted to measure exhaust particle
size and concentration using a *wo frequency light trans-
mission technique. A helium-neon laser and an argon-ion
laser were used for light sources. The lasers were mounted
in a building next to the test cell and the light beams
were directed to the detector boxes using beam splitters
and mirrors. Alignment of the source/detector units using
this procedure was awkward and vibrations caused by running
the engine made accurate measurements difficult.

In order to compensate for the above problems, the
light sources were changed from lasers to collimated white
light sources; and they were installed directly across from
the detector boxes. This change greatly simplified align-
ment and insured measurement of the exhaust streams only.
The detectors and collimated white light sources were
mounted on freestanding platforms, separate from the test
cell, to reduce vibrational problems. Since a white light
source contains many frequencies of light, three narrow
pass filters were installed in each detector unit to isolate
specific frequencies. Only two frequencies are necessary
for measurement purposes; the third frequency served as a
redundant check on accuracy. It was felt that this tech-
nique would improve the reliability of the measurements
significantly.

In order to verify measurements of particle size using

the three frequency light transmission technique, it was
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necessary to physically collect exhaust particulate matter
and measure the particle sizes with a Scanning Electron
Microscope (SEM). Darnell [Ref. 2] used impact particle
collectors which were inserted directly into the exhaust
streams. This technique proved unsatisfactory and made
particle size measurement difficult since the particulate
matter was distorted upon impacting the collector. 1In
order to eliminate this problem, an improved dry impinger
particle collection technique was implemented.

A large number of fuel additives have been developed
and many have been tested by the Naval Air Propulsion Center
to determine their effects on smoke production in turbojet
engines. Those which proved to be most effective in re-
ducing smoke output during tests were further evaluated by
barnell [Ref. 2] and during this investigation. Tests
during this investigation were conducted using Ferrocene,
12% Rare Earth Hex-Chem, and 12% Cerium Hex-Chem.

During previous investigations at the Naval Postgraduate
School the fuel additives were mixed directly with JP-4 and
then pressure fed to the combustion chamber of the engine.
This procedure was time-consuming as fuel tanks had to be
drained and refilled each time fuel additives or concentra-
tions were changed. In order to overcome this problem,
precision metering pumps were added to the fuel system. The

pumps allowed accurate fuel additive injection and provided

17
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ease in changing fuel additive concentrations while the
engine was operating.
The effects of smoke suppressant fuel additives upon E
the production of nitrogen oxides was also considered during
this investigation. 1In particular, NOx was monitored at the
test cell stack exhaust to determine if the fuel additives

produced any notable changes in the production of this gas.
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II. EXPERIMENTAL APPARATUS

A, SUB-SCALE TURBOJET TEST CELL AND ENGINE

The test cell used during this investigation was a one-
eighth scale model of an actual test cell located at the
Naval Air Station in Alameda, California. It is fully docu-
mented in Refs. 3 and 4, and is also addressed by Darnell in
Ref. 2. The test cell, shown in figure 1, has a ramjet type
combustor which simulated the combustion chamber of a turbo-
jet engine. The combustor is illustrated in figure 2 and
fully documented in Ref. 5.

High pressure air supplied by a compressor was directed
through the combustor where ignition and burning of the
fuel/air mixture occurred. The hot, high pressure gases
produced in the combustor were then directed through an
exhaust pipe in the test cell where they were mixed with
bypass air and exhausted through a converging nozzle. The
nozzle directed the mixture of combustor exhaust gases and
bypass air into an augmentor tube which was connected di-
rectly to an exhaust stack. The test cell augmentation ratio
could be changed by varying the diameter of the augmentor
tube, the engine-augmentor tube spacing, and/or the flow
restrictions in the stack.

The engine inlet was simulated by using a six inch suc-

tion line which effectively pulled air in through the test
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cell inlet. All air feed lines and the six-inch suction
line were fitted with pneumatically controlled valves which
provided precise metering of the flow rates through the
test cell during engine operation. The pneumatically con-
trolled valves were connected to a control panel to provide
for remote operation of the valves and flow rates. By
judiciously controlling the high pressure air, fuel £flow,
and the suction air, actual test cell conditions could be

simulated for a variety of engine operating conditions.

B. FUEL SYSTEM

The fuel systes: rxizted of a portable fuel supply, a
remote control pans:. .ud two precision metering pumps for
fuel additive i=3jectium.

The portable fuel supply, shown in figure 3, consisted
of two interconnected fuel tanks, a cavitating venturi for
flow-rate control, and remotely controlled, electrically
actuated solencid valves. The fuel tanks were pressurized
using gaseous nitrogen and a hand operated regulator located
on the control panel (figure 4). Each tank was equipped
with an electrically activated vent valve. A single fuel
line connected both tanks to the combustor through an elec-
trically operated shut~off valve. Fuel flow rate to the
combustor was controlled by means of a cavitating venturi

installed in the fuel line. The cavitating venturi allowed

fuel flow adjustments by simply regulating the upstream
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pressure in the fuel tanks. A calibration curve for fuel
flow rate versus venturi pressure is shown in figure 5.

Two Eldex, Model E, precision metering pumps, shown in
figure 6, were utilized for fuel additive injection into
the fuel line just prior to the combustor. A swirl type
mixer was incorporated to ensure that mixing of the fuel
and additive occurred prior to the combustor. Each pump
was capable of delivering between 0.2 and 5.0 ml./min. of
fuel additive. The flow rate versus pump micrometer set-
ting was pre-calibrated and the results are shown in figure

7.

C. TEST CELL INSTRUMENTATION AND DATA COLLECTION

The subscale test cell at the Naval Postgraduate School
provides the opportunity for easy measurement of pressures
and temperatures anywhere within the system durinc engine
operation. Using standard ASME flow calculations {[Ref. 6],
mass flow rates anywhere within the test cell could be cal-
culated. The pressure tap and temperature sensor locations
used during this investigation are shown on a schematic of
the test cell in figure 8.

All pressure lines were connected to an automatic-
stepping Scanivalve with a 500-psi pressure transducer.
Thermocouple leads from the temperature sensors and elec-
trical leads from the Scanivalve were connected to HP-3495A

scanners.
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Automatic data acquisition and data processing were
provided on demand by an HP-21 MX computer system. Data
was acquired by systematically addressing the scanners and
an HP-3455A digital voltmeter. The analog data were passed
through an A/D converter and then processed by a computer
program which provided flow rates and other pertinent sys-
tem computations. Temperatures, pressures, flow rates, and
other pertinent test cell data were then printed out.

During previous investigations of fuel additive effects
on the production of smoke in turbojet engines, it was
noted that the combustor exhaust temperature played a sig-
nificant role. For this reason, it was desirable to have
a permanent record of the combustor exhaust temperature for
each fuel additive analyzed. To provide this record, a
high temperature thermocouple was installed at the combustor
exhaust and its output was connected to a strip chart

recorder.

D. TRANSMISSOMETER

The transmissometer utilized during this study was a
Leads and Northrop model 6597. The transmissometer con-
sisted of a white light source, a detector unit and a signal
conditioner/display unit. The white light source and thc
detector unit were mounted at the top of the test cell on

opposite sides of the stack to provide readouts of exhaust




stream opacity. Figure 9 shows the source and detector and
figure 4 shows the signal conditioner/display unit.

During this investigation, the transmissometer output
was connected directly to a strip chart recorder, thus pro-
viding recorded values of exhaust opacity as the fuel addi-

tives were evaluated.

E. OPTICAL DETECTOR SYSTEM
The transmission of light through a cloud of uniform

particles is derived from Bouguer's Law [Ref. 7]:
T = exp(-QAnL) = expﬁ-(sqcmn/zcd)j (1)

where (T) is the fraction of light transmitted, (Q) is the
dimensionless extinction coefficient, (A) is the cross sec-
tional area of a particle, (n) is the number concentration
of particles, (p) is the density of an individual particle,
(L) is the path length the beam of light traverses, (Cm) is
the mass concentration of particles, and (d) is the particle
diameter.

From Bouguer's Law it is seen that the transmissivity
of a beam of light decreases exponentially as the path
length, particle concentration, and Q/d ratio increase.

Mie light scattering theory allows the extinction coef-
ficient (Q) to be calculated as a function of particle size,
wavelength of light and the complex refractive index of the

particles.
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In a paper presented by Dobbins [Ref. 8], Bouguer's Law

was revised to allow for a distribution of particle sizes:
T = exp(-(3QC L/20d,,)1] (2)

where Q represents an average extinction coefficient and
d32 represents the volume-~-to-surface mean particle diameter.
The average extinction coefficient can be calculated as a
function of the particle size distribution, the wavelength
of light, and the complex refractive index of the particles.

Taking the natural logarithm of egquation (2):
In(T] = Q[-3CmL/Zod32] (3)

Since the transmittance of a beam of light passing through
an aerosol of nolydisperse particles is directly related to
the wavelength of the light, equation (3) can be written for

a specific wavelength of light:
ln[TA] = QK[-3CmL/2od32] (4)

For two wavelengths of light, the ratio of the natural logs

of the transmittances is then given by:

in :’I' \1-
lnET\zj

o0
== L (5)
X2

where Cm, L, 5, and d32 remain constant for both wavelengths.
A Mie scattering computer program provided by K. L. Cash-

dollar of the Pittsburgh Mining and Safety Research Center,
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Bureau of Mines allowed calculation of 61 and the 51 ratios
as a function of d32 based on inputs of the complex refrac-
tive index of the particles, the refractive index of the
surrounding medium, the standard deviation of the distri-
bution and the wavelengths of light. During this investi-
gation, the surrounding medium was assumed to be air with

a refractive index of one. The complex refractive index
and the standard deviation of the particle size distribution
for the exhaust particulate were unknown. Most of the ex-
haust particulate can be reasonably assumed to be carbon.
Therefore, a number of reasonable values for carbon [Ref. 7]
were supplied as inputs to the computer program. OCnce 5\,
d32, and T\ are known, mass concentration can be calculated

according to the following rearrangement of equation (3).
' 1ln T, (6)

In order to measure transmissivity, a collimated beam
of white light was directed through the exhaust stream to a
detector which split the light into three wavelengths.
-ight intensity was measured using linear photodiodes.
Transmissivity was determined by comparing the percentage
of photodiode output without particles present <o the per-
centage of photodiode output with particles present. Only
two values (two wavelengths) of transmittance are required

to calculate d32 and Cm if the index of refraction and

o
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standard deviation are known. The third wavelength pro-
vides for three ratios which can be used to determine three
values of d32. various refractive indices and standard
deviation combinations are tried until all three ratios
provide the same d32. This redundant calculation of d32
provides reasonable assurance that the correct index of
refraction and standard deviation have been used [Ref. 7].

The light detectors, shown in figure 10, have a sin-
gle entry point for the beam of collimated light, two beam
splitters, three narrow pass filters, andé three photo-
diodes. The entry point for the collimated light was a
0.25 inch I.D. tube fashioned to minimize forward scat-
tered light effects [Ref. 7]. After the light entered the
detector box, it was passed through two beam splitters
which resulted in three separate beams of light. Each of
the three beams of light was directed through a narrow pass
filter and onto a photodiocde. Neutral density filters were
used to decrease the light intensity in order to¢ priu=sat
the photodiodes from being overdriven. Figure 11 .is a
schematic of the detector box and shows the paths followed
by the light inside the detector.

The white light source was provided by a projector with
a 750 watt incandescent bulb. By adjusting the lens on the

projector, a nearly parallel beam of light was realized.

In order to provide light of uniform intensity, a piece of

il e M e L L
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diffuser glass was placed between the projector lamp and
the focusing lens. The nearly parallel source was then
directed onto a 0.040 inch pinhole to develop a point
source of light. The divergent beam of light exiting the
pinhole was routed through a 31.5mm diameter achromatic
lens with an 80mm focal length to provide collimated light.
The collimated beam of light was then reduced to 0.50 inch
diameter by passing it through a reducer tube. The col-
limated white light source is shown in figure 12.

Two source/detector systems were utilized during this
investigation. One source/detector pair was mounted at the
test cell stack exhaust and the other pair was mounted at
the motor nozzle exhaust.

Alignment of the source/detector pairs was critical, and
they were extremely sensitive to vibration during engine
operation. To eliminate vibrational problems and the need
for continuous realignment, the source/detector pairs were
permanently mounted on free-standing platforms separate from
the test cell.

Aluminum covers were fabricated to prevent dust and
moisture from entering the circuitry and affecting the
optics. To further preclude moisture from the systems,
heaters in the form of 15 watt light bulbs were utilized
to keep the inside of the covers dry.

The detector unit mounted at the stack exhaust incor-

porated narrow pass filters of 10140, 6300, and 4500




angstroms while the combustor exhaust unit incorporated
filters of 10000, 6943, and 4000 angstroms. It was neces-
sary to use filters separated by at least 2000 angstroms
tc insure accurate transmittance ratios.

The output of each detector unit was connected to a
strip chart recorder to provide real time visual indica-
tions and records of fuel additive effects during engine

operation.

F. EXHAUST PARTICLE COLLECTION

In order to provide a means of physically collecting
exhaust particulate matter, a dry impinger collection train
was implemented [Ref. 9]. The sampling train, shown in
figure 13, was composed of a sampling tube located at the
combustor exhaust, a collection box with six sample holders,
and a vacuum pump with in-line filters and control valves.
The sampling tube, shown in figure 14, was made of 0.25 inch
inner diameter stainless steel and was located in the center
of the augmentor tube, aft of the combustor exhaust. 1In
order to minimize flow distortion about the sampling tube,
it was necessary to remove samples of exhaust gas and par-
ticulate matter iso-kinetically. A sonic choke was used to
regulate the flow rate through the sampling train. A vacuum
pump supplied the pressure differential necessary for proper

operation of the sonic choke.




The sample box was designed so that up to six samples
of exhaust particulate could be taken during engine opera-
tion. Collection times were manually controlled by opening
and closing the sliding doors covering each sample holder
at ten to twenty second time intervals. An in-line filter
prevented clogging of the sonic choke and ingestion of

exhaust particulate by the vacuum pump.

G. NITROGEN OXIDES ANALYZER

A Monitor Labs, Model 8440 E, Nitrogen Oxides Analyzer
shown in figure 15 was used to determine fuel additive
effects on Nox production during engine operations. The
analyzer is fully described in Ref. 10.

Test cell exhaust gas was sampled using a stainless
steel probe mounted con the stack cover. The gas sample was
routed through a twelve inch Mott Inertial Filter which re-
moved particulate matter greater than 0.5 microns in diame-
ter. From the filter, teflon tubing was utilized to route

the gas to the analyzer.




IITI. EXPERIMENTAL PROCEDURE

Initially, all test equipment was turned on and allowed
to warm up. This was done to insure that the measurement
and recording devices were functioning properly and also to
eliminate condensation which might have formed on the optics
of the transmissometer and the optical detector system.

After the initial warm-up period, the optical detector
systems and the transmissometer were checked to insure that
the alignment between sources and detectors had not been
disturbed. The transmissometer was checked by insuring
that a zero and a one hundred percent opacity reading were
realizable. The optical detector system was checked bv
measuring the maximum detector outputs and comparing them
to output data taken when the system was first instaliled
and aligned.

Once it was evident that the measurement equipment out-
puts were reliable and correct, air éressures within the
test cell were adjusted. Using the remote control cart
(figure 16) located near the computer console, pneumatically
actuated valves in the six-inch suction line and the three
high-pressure lines were opened. The computer then analyzed
test cell conditions and a printout of test cell pressures,

temperatures, and flow rates was provided. The pneumatically




actuated valves were manipulated until desired test cell
conditions and flow rates were set.

The air flowing through the test cell caused the optical
detector system outputs to decrease and the opacity reading
from the transmissometer to increase slightly. In order to
obtain test results due to exhaust particulate only, the
transmissometer was rezeroed and the new one hundred per-
cent transmittance point for each output of the optical de-
tector systems was marked on the strip chart recorders.

With final adjustments made, the fuel tank/cavitating
venturi pressure was adjusted to provide the desired fuel
flow rate (figure 5). An oxygen/ethylene ignition torch was
used to ignite the JP-air mixture within the combustor.

Once the desired combustor exhaust temperature was
achieved through manipulation of the fuel flow rate, and
steady state outputs were obtained, a particulate sample
and data were taken. In all tests conducted during this
investigation values for fuel tank pressure, venturi pres-
sure, NOx concentration, opacity, and combustor exhaust
temperature were manually recorded. The latter two were
also recorded by a strip-chart recorder. Once JP-4 data
were obtained, the fuel additive pumps were activated.
Additive flow rates were adjusted until minimum opacity
readings occurred. Data were recorded at each pump setting
and a particulate sample was collected when the minimum

ovacity readings occurred. After data collection was
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completed, and the engine had been shut down, post-run
zeros and one hundred percent points were marked on the
strip chart recordings to insure that alignment of the op-
tical measuring equipment had not changed.

In order to standardize the experimental investigation
of fuel additive effects on smoke production, the fuel
flow rates and air mass flow rates were set to the same
values each time a test was conducted. Nominal values for

test cell air mass flow rates were:

6 inch suction line ------ 1.031 (lbm/sec)
3 inch bypass line ===-=-- .939 (lbm/sec)
Combustor primary air ---- .281 (lbm/sec)
Combustor secondary air -- .198 (lbm/sec)

These settings provided a test cell augmentation ratio of
3.95 and an augmentor tube mass flow rate of 7.025 (lbm/sec)
with the nominal flow resistance grid installed in the ex-
haust stack. The cavitating venturi pressure was normally
set at 560 psig to insure a fuel flow rate of .0169 (lbm/sec)
and a combustor exhaust temperature of 2010°R.

The particulate samples collected during each test were
analyzed for particle size using a scanning electron micro-
scope and the results were used to verify data obtained from

the outputs of the optical detector systems.
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IV. RESULTS AND DISCUSSION

A. INTRODUCTION

Four series of tests were conducted during this investi-
gation. Two series of tests were completed using Ferrocene;
one on 10 November 1981 and the other on 19 Novembter 1981.
The tests using 12% Cerium Hex-Chem and 12% Rare Earth Hex~
Chem were both conducted on 19 MNovember 1981.

The data collected during this investigation are sum-
marized in tables I and II. Recorded data and data reduced
from strip chart recordings are summarized in tables III,
IV, and V. A typical set of strip chart recordings 1is
shown in figures 39-42. To supplement the information pre-
sented in tables I-V, pertinent data from these tables are
presented graphically in figures 17-22. SEM photographs of
exhaust particulate collected during the fuel additive
tests are shown in figures 43-52.

All data presented should be analyzed for trends and
averages vice specific point data since the sampling tech-
nique did not average the momentary changes in test cell
air flow rates caused by compressor fluctuations. As an
example, figure 17 shows the discrete data for combustor
fuel/air ratio connected by a series of straight lines. A

least-squares polynomial fit of the discrete voints results
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in an average combustor fuel/air ratio shown by the dashed
line.

Figure 17 implies that significant changes in stack gas
opacity and engine exhaust particulate mass concentration
(Cme) result from small changes in combustor fuel/air ratio
(f/a)c. Combustor exhaust temperature (Tc) and combustor
fuel/air ratio are directly related and both serve as good
indicators of overall engine operating conditions.

In an effort to determine the effects of fuel additives
and test cell operating conditions on opacity, and average
particle size (D32) and mass concentration; run-to-run
variations in combustor exhaust temperature were considered
in analysis of the data presented in figures 17-22. 1If Tq
remained constant, changes in opacity, etc. should be due

primarily to varying fuel additive concentrations.

B. ADDITIVE EFFECTS ON STACK GAS OPACITY

Figure 18 summarizes the effects of additive concentra-
tion on stack gas opacity for each fuel additive tested.
For additive concentrations of zero, the points plotted
actually represent the average value of cpacity taken before
and after the fuel additive test. Ferrocene and 12% Cerium
Hex-Chem produced significant decreases in test cell stack
opacity for additive concentrations between twenty and
thirty milliliters per gallon of JP-4. The additive 12%

Rare Earth Hex-Chem did not work well as the stack opacity

34




actually increased as the additive concentration was
increased.

Ferrocene was tested on two separate days with slightly ;
different test cell operating parameters. The tests on
10 November were conducted at a slichtiy higher combustor
exhaust temperature than the tests on 19 November. In-
creasing combustor exhaust temperature tends to decrease ¢
the opacity and this is why one curve appears lower than
the other on figure 18. However, the effects of ferrocene
were about the same on both days with a twenty-five to i
thirty percent maximum decrease in opacity.

The 12% Cerium Hex-Chem additive was also tested on 19
November with essentially the same results as Ferrocene.

The curve in figure 18 is lower than for Ferrocene, partly

due to the higher combustor exhaust temperatures during the
test.
To summarize, 12% Rare Earth Hex-Chem increased stack
gas opacity rather than decreasing it. Considering varia-
tions in test cell operating conditions, Ferrocene and 12%
Cerium Hex-Chem additives both decreased opacity about
twenty-five to thirty percent for additive concentrations )

between twenty and thirty milliliters per gallcn of JP-4.

C. ADDITIVE EFFECTS ON D32

Using the three transmittance values derived from the

strip chart recordings (Table III), three extinction
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coefficient ratios were determined for each fuel additive

concentration tested. With the use of the Mie Scattering
computer program outputs and equation 5, three Dj, values
were determined for each additive concentration for a spe-
cific complex refractive index and standard deviation. Sam-~
ple outputs of the computer program are included as figures
23-38. The refractive indices and standard deviations used
in these figures were the only ones which provided consist-
ent D, values (from the three transmittance ratios)
throughout this investigation. An average value of D32: .03
microns was used as the basis fox accepting data derived in
the above manner. The derived values for engine and stack
exhaust mean particle diameter (D32) are shown in Table 1IV.
Stack values are also presented graphically in figures 19-
22.

Throughout this investigation D3, varied between .18 and
.24 microns with an average value of about .21 microns.
Considering the inaccuracies in measurements of the trans-
mittance values, .18 to .24 microns was not considered a
significant change in average particle diameter. For this
reason, it is felt that the particle diameters remained
essentially the same throughout all the tests and that vary-
ing additive concentrations had no significant effect on
Dyy- The data presented in table IV also indicated that no
variations in particle diameter occurred between the engine

exhaust and the stack exhaust.
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D. ADDITIVE EFFECTS ON MASS CONCENTRATION

Using the derived D3p values from table IV, figures 23-
38 were entered to determine a value for the extinction
coefficient (5\) at each wavelength of light analyzed. The
curve used in determining 6\ had the same complex refrac-
tive index and standard deviation as the curves used to
obtain D32. Equation 6 was then used to calculate a mass
concentration value at each wavelength. The value for
particle density was assumed to be 1.5 gm/cm3. The value
for L was .762 meters at the stack exhaust and .0498 meters
at the engine exhaust. Calculated values of concentration
are less accurate than Dy, values due to the uncertainty in :
both - and Q. Table IV lists the results for wavelengths of

10000 Angstroms (engine exhaust) and 10140 Angstroms (stack

exhaust). The mass concentrations obtained using the other
wavelengths were essentially the same and are not included.
Engine and stack mass concentration values are also plotted
in figures 19-22.

The mass concentrations at the engine and stack exhausts
were significantly affected by the fuel additive concentra-
tions and also by wvariations in the combustor operating con-
ditions. As the combustor exhaust temperature increased,
the mass concentration decreased and vice versa (Figure 17).
For approximately constant combustor conditions, Ferrocene
and 12% Cerium Hex-Chem tended to decrease the mass con-

centrations for additive concentrations between twenty and
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thirty milliliters per gallon of JP-4 while 12% Rare Earth
Hex-Chem tended to increase the mass concentration as addi-
tive concentration was increased.

Since there was a significant decrease in particulate
mass concentration between the engine exhaust and the stack
exhaust, mass flow rates of particulate at the engine and
stack were calculated to determine if the decrease was due
in part to chemical reactions within the test cell or due
strictly to the dilution by augmentation air. The particu-

late mass flow rates can be written as:

Moy = CmeQq (7)

Meg = CmgQq (8)
Q is the volume flowrate which can be calculated assuming
perfect gases from

Q = AV = é%g (9)

at the engine and stack exhausts. The £following assumptions

were made in these calculations.
= 53.3 ft-1bf/lbm-°R

- Pengine = Pstack = 14.7 PSI

engine mp * Mg * Mgp

Mst = Mstack ~ maugmentor tube

Tstack = TR
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engine MIX m

er

The particulate mass flow rates were then ratioed:

“e e MIX

Ihcs CmSQS CmSmSTTR

&Ce CmeQq cmeﬁ T

{10)

Within the limitations of the above approximations, a ratio
of 1.0 would indicate that there was no change in the mass
flow rates of particulate between the engine and stack ex-
haust; therefore, any decrease in mass concentration at the
stack would be due strictly to dilution of the exhaust par-
ticulate with augmentation air. Table V presents these
ratios and the general results indicate (within the limited
accuracy of the calculations) that no significant chemical
reactions involving the particulates occured within the
augmentor tube or exhaust stack.

In summary, fuel additives and increased engine operating
temperature decreased the mass concentration of exhaust par-
ticulates, and the decrease in mass concentration between
the engine exhaust and stack exhaust was due primarily to
dilution of the engine exhaust gases within the augmentor

tube.

E. ADDITIV: EFFECTS ON NOY CONCENTRATION
Values for Nox concentration measured at the stack ex-

haust are included in table III. None of the additives

)
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produced any significant change in Nox concentrations at the

stack exhaust.

F. SEM ANALYSIS OF ENGINE EXHAUST PARTICULATE SAMPLES

Scanning electron microscope photographs of engine ex-~
haust particulate collected during tests with JP-4 only are
shown in figures 43 and 44. The variation in particle
diameters exhibited in these photogravhs is of particular
interest. Figures 43 and 44 show individual particle sizes
varying from about .05 microns up to about .40 microns.
Dy, values determined using the light transmission technique
represent the volume-to-surface mean particle diameter based
on a specific log-normal distribution. As an example, a Dy,
value of .21 microns, derived using a complex refractive in-
dex of 1.8-.¢60i and a geometric standard deviation of 2.0,
is the mean of the distribution. The tails of the distri-
bution for this case were .031 microns and 1..0 microns.
Therefore, particle sizes inside the tails of the distribu-~
tion are to be expected in varying amounts. The predominant
particle size should occur around the mean and this appears
to be the case for both figures 43 and 44. The optical de-
tector systam provided values of .20 and .21 microns for
tests conducted using JP-4 only.

Figyure 43 alsc shows large agglomerations of particles
but it is not known whether they formed within the combustor/

tailpipe or whether they formed during the sampling process.
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vember 1981.

ml./gal. JP-4.

Figures 45 and 46 are SEM photographs of particles col-
lected during fuel additive tests with Ferrocene on 10 No-

The fuel additive concentration was 32.30

A D32 value was not calculated from the

photographs but the particle sizes in the photographs appear
to be very similar to those in figures 43 and 44.

Figures 47 and 48 are photographs of particles collected
during tests on 19 November 1981 with a Ferrocene concentra-
tion of 19.20 ml./gal. JP-4 and figures 49 and 50 are photo-
graphs of particles collected during the same tests with a
Ferrocene concentration of 28.80 ml./gal. JP-4. The photo-
graphs again indicate no significant change in particle
diameters when compared with the photographs with no addi-
tives (Figures 43-44).

Figures 51 and 52 are photographs of particles collected
during tests with 12% Cerium Hex-Chem. The additive concen-
tration was 19.60 ml./gal. JP~4. Although there were fewer
particles in these particular photographs, there did not
seem to be a significant change in mean particle diameter
when compared with the photographs of the other samples.

Particle samples were not taken during the tests using
12% Rare Earth Hex-Chem. This additive did not reduce

opacity, and it was felt a sample would provide no useful

Overall, the SEM photographs indicate that the values of

D32 determined using light transmission measurement were
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reasonably ac. s:iate representations of the actual average

particle sizes. No attempt was made to determine 032 from
the photographs because of the probable effects of the col-
lection method on the sizes collected and on the agglomera-

tion processes.




V. SUMMARY OF RESULTS

From the data collected during this investigation, it
appears that variations in test cell exhaust opacity were
due primarily to changes in exhaust particle mass concentra-
tion rather than to changes in exhaust particulate size.
Increased combustor temperature and the effective fuel
additives both reduced the amount of particulate matter.

The effects of increasing augmentation ratio were to simply
dilute the exhaust stream, reducing opacity but not changing
particulate mass or size.

The optical determination of mean particulate size at
the engine and stack exhausts appears to be a good and
reasonably accurate technique for evaluating the effects
of engine and test cell operating conditions and fuel com-

position changes on the emitted particulates.
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